## JHDM Project

- Japan Highways Data Model -

#### **Committee Members of the JHDM**

Chairman Prof. H. Furuta, Kansai Univ.

Organizer Japan Highway Research Institute

Advisors Prof. R. Shibasaki, Tokyo Univ.

Prof. S. Tanaka, Kansai Univ.

Associate Prof. T. Froese, UBC

## The Highway Network in Japan



#### **Problems of the Present Condition**



- **♦ Problems** are the following:
  - > Not to deliver data efficiently
  - > Difficult to recycle data
  - > Not to manage data effectively

### **Purpose and Goal**

- **♦ Purpose** is the following:
  - > To improve reusability of data
  - > To keep data certainly
  - > To improve quality of data
  - > To save labor of data managing

- **♦ Goal** is the following:
  - > To develop specifications for data exchange in highway administration.

# Circulation of Reusable Data from Upper Phase to Lower Phase



Giving and Taking Data by the General Format

## **Composition of JHDM**

- JHDM is composed by the following:
- **♦Function Activity Model**
- **♦Road Structure Model**
- **♦XML Schema**
- JHDM is arranged by the following documents:
- **♦Project Definition** 
  - This document describes concepts of JHDM; e.g. significance, demand, and scope.
- **♦JHDM Specification** 
  - This document describes basic composition, model definition and so on of JHDM that are needed at practical using JHDM.

## **Function Activity Model**

#### **Detailed Design of Superstructure**



## **Function Activity Model**

#### e.g. Account of Alignment



#### **Road Structure Model**

Expression by Class Diagram of UML



#### **XML Schema**

#### - Example of Definition of Horizontal Alignment -





```
<xs:complexType name="HorizontalAlignment">
<xs:complexContent>
<xs:extension base="jx:Alignments">
<xs:extension base="jx:Alignments">
<xs:sequence>
<xs:element name="InflectionPoint_element" ... />
<xs:element name="Brake_element" ... />
<xs:element name="edge">
...
<xs:attribute name="name" type="jxsp:CharacterString"/>
</xs:extension></xs:complexContent></xs:complexType>
```

(Horizontal Alignment)

(Inherits Alignments Class)

(Inflection Point)
(Brake)
(Alignment)

(Alignment Name)

#### State of Research in FY2004



#### State of Research until FY2004



## Concept of Road Structure Model (Earth Work)



#### **≫**Characteristic

Concepts of each the road-domain CAD and the general-purpose CAD are needed. Therefore, this model is expressed by 3D or 2D-cross section or both of them.

## Concept of Road Structure Model (Steel Superstructure)



**≫**Characteristic

Steel Superstructure is fabrication of steel plates. Therefore, this model is expressed by the external form line of plates composed by 3D Skeleton line.

# Concept of Road Structure Model (PC/RC Superstructure)

#### Concrete



**Cross section** 

**>** Characteristic

PC/RC Superstructure is an aggregate of Concrete, PC cable and reinforcing bar. Therefore, this model is expressed by 2D-cross section. Alteration points of the cross section are defined as the range between a point and another point measured by sweeping.

# Concept of Road Structure Model (PC/RC Superstructure)

PC cable



PC cables are defined the same way as concrete.

#### **Concept of Road Structure Model (Pavement)**

- (1) Pavement is expressed as cross section data, and the whole image is expressed by integration of the cross section data in longitudinal direction.
- (2) The whole image of accessory is expressed as attributes of start point. But deduction of pavement area is expressed by integration of the cross section data.



#### **Concept of Road Structure Model (Pavement)**



Accessory : guard fence, marking · · · ·

## **Concept of Road Structure Model (Tunnel)**

- (1) Permanent work and so on are expressed as cross section data, and the whole image is expressed by integration of the cross section data in longitudinal direction.
- (2) The whole image of accessory is expressed as attributes of start point.



## **Concept of Road Structure Model (Tunnel)**



Tunnel is expressed as inside equipment and outside structure:

- Equipment: warden aisle, surface drainage • •
- •Structure: staging, lining, entrance work ••••

# Finally, Research Plan

JH will be changed from public to private in FY2005.

When JH will stabilize the organization, a new phase turn of JHDM will be worked on, while taking the tendency of SXF Level 4.

## Japan Highway Data Model

Data Exchange Specifications for Expressway Business in Japan

Shigenori Tanaka, Kansai Univ.

### What is JHDM?

• JHDM is a model that shows the relations between objects on expressways, using "shape information" and "attribute information."



## What is purpose?



The purpose is that various construction data are applied to 3D graphic system, to business support system, and to other application through JHDM.

## **Composition of JHDM**

#### JHDM is composed of the following elements:

- Activity Functional Model
- Road Structural Model using UML
- XML Schema



## Work Types Covered by JHDM



## **Research History**



## Road Structural Model Earthwork: Basic Idea

The shape of an object is represented by an integration of sections.



#### A Part of Instance of Earthwork



## Road Structural Model Steel Superstructure: Basic Idea

The shape of an object is represented by

the frame lines and the external side lines of the plates.



### A Part of Instance of Steel Superstructure



## Road Structural Model PC/RC Superstructure: Basic Idea

The shape of an object is represented by an integration of sections.



#### A Part of Instance of PC/RC Superstructure



## Road Structural Model Tunnel: Basic Idea

The shape of an object is represented by an integration of sections.



#### A Part of Instance of Tunnel



## Road Structural Model Pavement: Basic Idea

The shape of an object is represented by an integration of sections.



#### A Part of Instance of Pavement



### Road Structural Model (Overall View)



#### Conclusion

#### We think that

- The existing data can be used at higher levels.
- In the future, "Three-dimensional data" can be created from two-dimensional data without human resources.

- > Future Tasks for Practical Application
  - Research on temporal schema.