建設情報標準分類体系（JCCS）
開発ガイドライン（案）Ver 1.1

平成16年05月
コード小委員会
目次

1 はじめに .. 3
2 JCCS 開発の基本的な考え方.. 4
 2-1 情報共有・連携の困難さと実現の手立て ... 4
 2-2 概念定義とコード ... 5
 2-3 情報共有・連携のための二つのアプローチ ... 6
 2-4 交換標準 .. 7
 2-5 国際標準分類体系 ... 8
 2-6 オブジェクト指向の分類体系 .. 9
 2-7 JCCS 開発に関する考え方 .. 11
3 JCCS の概要 .. 12
 3-1 JCCS とは .. 12
 3-2 JCCS の目的 .. 12
 3-3 JCCS の適用範囲 .. 13
 3-4 JCCS の主たる機能 ... 13
 3-5 JCCS の構成 ... 14
 3-6 JCCS に基づいたコードの利用 .. 15
4 開発コンセプト ... 19
 4-1 国際標準との関係 ... 19
 4-2 開発要件 .. 20
 4-3 開発体制及び維持管理体制 .. 20
5 JCCS の構成 .. 21
 5-1 JCCS クラス .. 21
 5-2 JCCS 基本コード体系（JCCS 基本テーブル） .. 24
 5-3 JCCS 基本コード体系（JCCS 基本コード） ... 30
 5-4 JCCS 基本コード体系（JCCS 辞書） .. 30
 5-5 JCCS 複合化ルール .. 31
 5-6 ユーザが中心となって開発する分野 .. 33

(参考資料)
1 はじめに

現在、我が国の建設分野では、個々の業務やサービスに対応して各主体が内部的に最も効果的で使いやすいコード化を進めている。しかし、情報の交換や連携は、情報の基本的な単位であるコードの定義や意味が主体毎に違うことや、各主体を超えて情報を交換する場合にそれぞれの個別コードに対応して複数の変換テーブルを用意する必要があること等、不便な点が多いためうまくいっていない状況にある。

また、我が国では共通化に必要な分類・コード化手法といった基本的な概念は定着していない。このため、一部の特定業務でシステムとして立ち上っている事例を除けば、共通化作業に手間がかかる、各主体を超えた維持管理の仕組みが負担になるなどの理由から、関係者が自主的に集まり統一化を図るという動きはでていない。

このため、全分野に渡って共通化したコードの利用は行われておらず、良くてもコードの共通化はそれぞれの特定業務の分野内にとどまっている現状にある。CALS/ECの本格導入を控えた現在、いろいろな分野と効果的な情報がやりとりできる仕組みを構築することは急務の課題である。

この課題に対し、コード小委員会は建設分野全体の情報を対象とした建設情報標準分類体系（JCCS：Construction information Classification System in Japan）の開発を行うこととし、その原案を作成した。

本資料は、その JCCS を開発する際に、関係各位が今後、検討する際の基礎資料となるようにとりまとめたものである。検討後、内容が変わることがあることに留意されたい。
2 JCCS 開発の基本的な考え方

2-1 情報共有・連携の困難さと実現の手立て

CALS/EC では、業務の効率的遂行やコストダウン等の効果を得るため、ライフサイクルを通じた情報共有と連携の実現を主たる目的のひとつとしている。しかし、その実現は容易ではない。幅広い情報共有や連携によって、実効的な業務が行われている例はほとんどないに等しい。その理由はさまざまなであるが、もっとも基本的な問題に以下の二点がある。

<table>
<thead>
<tr>
<th>問題1</th>
<th>各組織や業務ごとに最適化が行われ、情報共有・連携の相手が必要とする情報が、相手が望む適切な形で提供されない。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ある組織や業務独自で好都合に規定された情報やその処理方法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>問題2</th>
<th>情報の定義や用法が、業務ごとに独自の判断で行われることが多いため、伝達された情報を活用することができない。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>同じ「言葉や表現」でも「意味」が違うもの</td>
</tr>
</tbody>
</table>

※同音異義語：(意匠の)「柱」と(構造の)「柱」・・・
※同義語：「総合図」と「調整図」、「検査」と「点検」・・・

【問題1】は、交換や連携が必要な情報に関する規定の仕方を、それまでの個別のやり方から、より他との協調性の高いやり方に変えることで解決できる。自ら決めた規定内容が正しく伝わるように、その内容を相手が分かる表現形式で正しく説明することができればよいため、各組織や業務の範囲内でかなりの部分を行うことができる。

一方、【問題2】は、情報共有や連携にとってより根源的なものである。伝達される情報を表現する概念や用語等の表記法が、送り手と受け手で互いに共通に理解できないものであれば、たとえ電子化しても情報を相互に活用することは不可能である。その解決は、必要とされる概念や表記法等の定義をすべて明確化し、体系づけることによってなされる。このような定義づけは【問題1】の解決にも有用で、情報共有・連携の基盤を与えるものとなる。
2-2 概念定義とコード

言葉は、ある概念を明示的に表現したものである。交換すべき用語を共通化するためにはその意味にあたる概念の定義の明確化が重要である。また、人が利用するにはその定義さえ明確であればよいが、電子的処理を行うためには、一般にその概念と1対1に対応付けられた「コード」（数値や記号が結び付けられたもの）が必要となる。

コンピュータでの的確な情報処理を行うためには、個々の情報（情報単位）の自己同一性（ID：アイデンティティ）を保証する必要があり、コードによってそれが実現され、高速処理が可能となる。「概念定義」と「用語の適用」、「採番」は、電子的な情報処理を行う上では三位一体の関係にあることになる。

※本小委員会（コード小委員会）では、この観点から、「コード（化）」という用語もしくは開発課題を幅広く捉え、特に「概念定義（とその体系化）」に重点を置いた検討を進めている。（実際にどのような符号を用いるかは、処理の効率化に係わる二次的な問題と位置づけられる。）

※「概念定義」を「体系化（ある見方に応じて構造的に整理すること）」することは、概念をどう「分類」するかという問題と密接に関連する。分類の標準化はコードの実用を図る上で必須のものであり、本小委員会の主要課題である JCCS（建設情報標準分類体系）はそれを具体化しようとするものである。

![概念定義とコードの関係](image1.png)
2-3 情報共有・連携のための二つのアプローチ

情報を共有し、連携するためには、大きく以下の二つのアプローチがある。

[アプローチ 1]: 送り手と受け手で、情報処理手法を統一（同一の情報システム、同一の処理手法、同一のコード等を画一的に利用）することで、情報変換なしに互いの業務を効果的に遂行する。

[アプローチ 2]: 送り手と受け手で、それぞれ最適とされる情報処理手法を用い、交換が必要とされる情報は相互に変換して相手に伝達する。

[アプローチ 1]では、互いの了解が得られた場合は、もっとも効果的な情報共有・連携が実現できる。他に拮抗する情報処理手法がなければ、特に問題なく受け入れることができる方法である。問題は、そのような合意形成が可能かという点に帰着する。

現在、郵便番号や JIS など一部の分野ではこのアプローチでの情報共有・連携が行われている。しかし、実際には様々なシステムを統一することは困難である。

一方、[アプローチ 2]は、互いの独自性を尊重し、情報処理手法を画一化することなく、必要に応じて情報を変換して相手に伝えようとする方法である。周知のように CALS/EC では、公共事業としての特性、WTO（世界貿易機関）への配慮等から、このアプローチが採用されている。特定の組織や業務の都合ですべてを規定し、その規定で他を縛ることは不合理であるといった認識に基づいたものである。当然、[アプローチ 2]では情報変換手法の標準化（交換標準の策定）が主たる課題となる。
2-4 交換標準

図2は交換標準の位置づけを表したものである。

(a)は共通の交換標準がなく、異なる情報システム間で個別に情報交換を行うもので、この場合は、システムの数に応じて、他のシステムとの情報交換の仕組み（トランスレータ）が幾何級数的に増え、実効的な情報交換に支障が生じることになる。

(b)はこれを改善し、特定業務における中立的な交換標準を定めた場合で、個々の情報システムはこの交換標準を入出力システムのみを用意すれば、他のシステムとの情報交換が可能となる。トランスレータの総数が抑えられるといった交換標準の効果がよく示されているが、適用範囲が当該特定業務に限定される点が問題となる。

(c)は、さらに(b)のもつ問題点を改善した場合である。(b)で定められる交換標準は特定業務別に固定に指定されるもので、異なる業務間では相互の整合性は保証されていない。(c)では各種の特定業務別交換標準を整合させる仕組みが用意されているため、各業務分野別に定められる交換標準を介して、異なる業務の情報システム間で効果的な情報交換、共有が実現できる。本小委員会で検討が行われているコードや分類の標準化の成果こそ、まさにこの異種業務間交換標準の基盤となるものといえる。
2-5 国際標準分類体系

CALS/EC では、WTO 等との関連から各種標準は国際標準に準拠することが求められている。わが国では、コードや用語の標準化の重要性への認識は低いが、海外主要諸国では情報交換の基盤として位置づけられており、国内標準が整備されている国も多い。ISO（国際標準化機構）でも、すでに国際建設標準分類 ISO12006 が策定されている。建設情報標準分類体系（JCCS）も当然、この ISO12006 に準拠して開発する必要がある。

図 3 は他の小委員会の開発課題も含め、開発されている CALS 標準と国際標準との関係をまとめたものである。電子納品の規定が準拠する国際標準がまだ定まっていないことが示されているが、JCCS がすでに述べた異種業務間の交換標準として機能することで、電子納品についても国際標準準拠が担保されるものとなると考えられる。

ISO12006（建設工事に関する情報の体系化）は実質的に、以下の二つの国際標準から構成されている。

- ISO12006-2: パート 2 : 情報分類のフレームワーク
- ISO12006-3: パート 3 : オブジェクト指向での情報のフレームワーク

パート 2 は、旧来の分類概念に依拠した標準分類の確立を狙いとしたもので、建設の設計から廃棄までのライフサイク全体で用いられる情報の分類の枠組（16 の類とその上位の 4 類）と、推奨されるべき 17 のテーブルを明らかにし、その構成要件を例示したものである。

パート 3 は、オブジェクト指向の情報システム間での情報交換の基盤を与えることを意図したもので、各種概念をその共通性によってまとめた「クラス」とその「関係性」を体系化している。実際の分類テーブルは、この「クラス」構成に依拠する形で、個々の情報システムの用途や機能に応じて自在に作りこまれることになる。

分類体系策定における国際的な動向は、パート 2 からパート 3 に比重を移行しつつあり、情報の意味やオブジェクトを中心に据えた情報処理方法が重要視されている。
2-6 オブジェクト指向の分類体系

「オブジェクト指向」とは、問題解決のための世界はすべて「オブジェクト」からなっているとする考え方で、そのオブジェクトを処理の最小単位として、解決の手順が進められる。従来の、全知全能の存在が解決の道筋をすべて指示するというアプローチとは異なり、部分として機能するオブジェクトを必要なだけ用意し、オブジェクト間のルール化されたやり取りによって解を引き出させるというものである。

このような考え方は決して目新しいものではないが、すでに、その成果はさまざまな形で日常に溶け込んでいる。パソコンでいえば、マウスやメニュー、ウィンドウシステムなどもその一例である。それぞれが自身がおかれた状態に応じて定められた振る舞いを行うという意味で、独自のオブジェクトとして機能していることになる。

「オブジェクト」とは、情報処理分野では「演算や操作などを行う手続きと、それに必要な情報や情報格納領域をひとつの対象物としてまとめたもの」であるとされている。分かりやすくいえば、「それが何であるか、どう振舞うかが明確に定義され、外部からの刺激によって、定められた活動を行うもの」ということになる。

オブジェクトの数が増加するにつれて、類似のものを「クラス」としてまとめて扱うことが有利となる。

図 4 オブジェクトとクラスの関係（パソコンを例として）
「クラス」は「類似したオブジェクトに対して、それらの共通的な特徴を規定したもの」で、「建築物」や「ビル」、「自動車」、「土木構造物」などは、それぞれ独自のクラスの例である。

この例でも分かるように、クラスは「関係」で結びつけられる場合がある。例えば「建築物」クラスと「ビル」クラスは「汎化（一般化）－特殊化」の関係にある。この場合、「建築物」を「ビル」の上位クラス、「ビル」を「建築物」の下位クラスと呼ぶ。

なお、クラスとその間の関係との表現方法を用い、対象とする領域や物の骨組みや構成を体系的に整理したものをオブジェクト指向の「スキーマ」という。

解決すべき領域のスキーマを正しく構築することが問題解決の大きな鍵となる。

図 5 クラスと汎化・特化の関係
2-7 JCCS 開発に関する考え方

ISO 12006-3 は、概念定義と各概念の関係付け、さらに用語の適用に関する枠組みを与えるもので、CAD データ交換の国際標準 STEP を代表とする各種のオブジェクト指向の情報（交換）システムや、ライフサイクルを通じた情報連携を指向する CALS/EC やような情報処理の仕組みとの親和性はきわめて高く、JCCS 構築の基盤として位置づけるべきものと評価できる。

一方、これまで使われてきた分類テーブルは、用語の体系的整理、実効的なコードの付与が容易となるといった意味で実務上、きわめて有効な手法である。そのあり方をまとめたものが ISO 12006-2 である。JCCS では、この ISO 12006-2 と ISO 12006-3 をいかに適切に融合して基本的枠組を構築するかが大きな課題となる。

具体的には、建設分野全体を的確にカバーするスキーマを確立し、その依拠するクラスの位置づけを明確化したうえで必要なオブジェクトを抽出し、オブジェクトの ID が保証された形で実用的な分類テーブルにまとめるといった方法が考えられる。

図 6 ISO 12006-2 と ISO 12006-3 の融合による JCCS 構築のフロー
3 JCCS の概要

3-1 JCCS とは

JCCS は、建設情報標準分類体系の略称であり、建設行為で使用する情報の統合化・共有化を行う際の情報単位（用語・概念）の利用方法の標準である。　

解説：
　建設情報標準分類体系（JCCS : Construction information Classification System in Japan）は、我が国における建設情報の標準分類体系であり、建設情報の統合化・共有化の標準である。

3-2 JCCS の目的

JCCS の目的は、建設分野における情報の定義や分類、利用及び取扱い方法を標準化することで、情報共有及び情報連携を確かなものとすることである。

解説：
　JCCS は、業務全体での生産性及び品質の向上に資するため、建設分野での情報の持つ意味概念の理解を共通化させることで、CALS/EC における情報共有及び情報連携にも資するものである。
3-3 JCCS の適用範囲

JCCS は、建設生産物のライフサイクルを通じて生成、加工、伝達及び利用されるすべての情報を含み、建設に関わるすべての行為及び事象に適用される。

解説:
建設生産物とは、建設行為によって生産される有形・無形の施設であり、JCCS は建設生産物及びそれに関わる資源・背景・行為等に関する情報を含むものである。
JCCS は、建設生産物のライフサイクルである構想・調査・計画・施工・維持管理・廃棄を通じて、生成・加工・伝達・利用される情報を対象とし、特定の関係主体、手法及び特定のシステムに限定されない幅広いものとする。
また、国内での適用を主としているが、国外の建設生産にかかわる事象や行為を排除するものではない。

3-4 JCCS の主たる機能

JCCS は以下の機能をはたすものである。
1. 用語の意味を確定
2. 建設情報のシステムを超えた共通利用環境を構築する際の仕組みを提供
3. 新たに共通利用を目的とした分類・コード化を図る際の標準的な分類及び語彙を提供

解説:
JCCS では、語彙の定義が明確化されているため、それを参照することにより実際に使う用語を適正なものとすることができる。
JCCS は実際の建設生産の流れのなかで情報を共通利用するための裏づけを与えるとともに、各組織が個別に共通利用を目的とした分類やコード化を図る際の指標として機能することが求められている。
3-5 JCCS の構成

JCCS は「JCCS クラス」、「JCCS 基本コード体系」、「JCCS 複合化ルール」、「JCCS 応用コード体系」、「JCCS 推奨分類」及び「実用コード」から構成される。

解説：
JCCS は求められる機能を実現するため、以下の 5 つのパートから構成される。

○JCCS クラス
建設情報の特性に応じてグループ化し、それらを関連がわかるように表記したもの。ISO-12006-3 を基礎とする。

○JCCS 基本コード体系
「JCCS 基本テーブル」、「JCCS 基本コード」及び「JCCS 辞書」を内包した JCCS の基本的な体系。

○JCCS 複合化ルール
「基本コード」単体では表現できない複合化した概念を表現するために「基本コード」の組み合わせの表現を規定したもの。

○JCCS 応用コード体系
「JCCS 応用テーブル」および「JCCS 応用コード」を内包した、特定の領域での利用に特化して体系化した体系。

○JCCS 実用コード
「JCCS 応用コード」を実際の利用上の利便性を図るため、独自に単純化したコード。JCCS 応用コードへの完全なコードの復元が可能である。

JCCS の構成は図 7 のとおりである。
3-6 JCCSに基づいたコードの利用

「JCCS 応用コード」を単純化した「JCCS 実用コード」を用いることにより、コードの円滑な高度利用が担保される。

「JCCS 応用コード」と関連付けを行うことにより、「既存コード」のコードの円滑な高度利用が担保される。

解説:
JCCSは中心となる「JCCS 基本コード」と、それぞれの領域での利用を考慮し、複合化ルールに基づき作成され、JCCS 基本コードと完全な連携をとった「JCCS 応用コード」とで連結されている。なお、実際にはJCCS 応用コードは、実用を考慮し付番されおおした「JCCS 実用コード」として利用されるケースもある。
この仕組みにより、異なる領域で利用されているコードも、JCCS基本コードに最終的に変換できることにより、コードの円滑な流通が可能となる。
また、既存のコードをJCCS応用コードと関連付けを行うことにより、JCCSの基本的なシステムを利用して他の領域へのコード円滑な流通手段を得ることができる。

図 8 JCCSに基づいたコードの利用
JCCSは、基本コードや推奨分類などを直接利用することができる。
さらに、各主体が共通利用を目的とした「応用コード」を作成する場合の基準を与えるものである。
JCCSの具体例の利用イメージは下図のとおりである。

コードの利用イメージ

JCCS基本コード体系

P. プロダクト

P2101 護岸

C. リソース

C3010* コンクリート
C3020* 鋼矢板

JCCS応用コード

鋼矢板護岸
(P2101)* + (C3020)*
コンクリート護岸
(P2101)* + (C3010)*

既存コード

鋼矢板護岸
KG321*
コンクリート護岸
KG111*

JCCS実用コード

鋼矢板護岸
M10105220*
コンクリート護岸
M10105100*

コードの利用

*: 上記のコードは参考として例を示している。
情報の分類やコード化は個別システムを構築する毎に行われてきたため、近年システム間でデータ交換を行うようになって障害が顕著化してきた。最近では、各分野での共通化も進んでいる。例えば道路分野では、道路通信標準として道路分野で扱う動的情報の分類とコードを定め、道路 GIS では道路管理分野で扱う静的情報の名称、分類を与えている。

このように、それぞれの業務システムで最も効率的と考えられる分類やコード化が行われてきているが、全体としての基準が無いために、結果として分野を跨ぐ情報交換を難しくする状況が生まれつつある。

このような状況下においてシステムを超えて情報共有を図る方法として、ネットワークシステム上で標準ライブラリを構築して各システムの情報をリアルタイムで交換する方法がある。

国際標準に準拠し建設分野で共通性の高い分類体系をもった JCCS は、さまざまな利用点で作成された個別システムの分類、コードを整理し、共通化し、標準ライブラリを作成する際の基準を与える。

![JCCSの図解](参考)
JCCS は、国際標準である ISO 12006 に基づいて分類テーブルが整理されており、その結果として JCCS の分類体系は建設分野で使用されるプロダクトモデルとは親和性の高いものになっている。このため、特に JCCS クラス、あるいはそれから個別分野に適用されて作成される応用コードを具体のデータモデルに適用することが可能である。

（参考）プロダクトモデルへの適用イメージ

JCCS クラス

JCCS

Object

Property

Relationship

Associate

Root

Object

Property

Relationship

Product

Process

Resource

Actor

Control

Group

Project

Associate によって Object, Property に名称やコードが付与される
4 開発コンセプト

4-1 国際標準との関係

JCCS は、国際標準分類体系に基盤を置くものとする。

解説:

JCCS は、以下の建設分野における国際標準分類体系のフレームワークに準拠する。

・ISO12006-2（情報分類のフレームワーク）
・ISO 12006-3（オブジェクト指向での情報のフレームワーク）

また、英国の Uniclass 注1、北米の OCCS 注2 および国内の AIJ コード（仮称）WD（案）注3 と同様の実用度として位置づけられる。

図 9 JCCS の位置関係

注1 英国の NBS サービス（英国王立建築協会所有の事業会社の一部門）が推進機関となって 1997 年より 3 年間かけて開発された英国内の建設標準分類テーブルで、ISO/TR 14177 に準拠している。

注2 Omniclass™ Construction Classification System、CSI（Construction Specification Institute）を事務局とする OCCS 開発委員会（共同議長は CSI と IAI（International Alliance for Interoperability）が推進機関となって策定。建築分野主体で作成されている。土木分野では、橋梁を示すテーブルはあるが、道路、河川に関するテーブルは含まれていない。

注3 社団法人日本建築学会の情報システム技術委員会に所属する建築情報標準化技術小委員会において検討されている建築分野における基本分類体系で、現在 Working Draft の段階である。
4-2 開発要件

- ニーズに応じ必要とされる分野を優先的に開発する。
- 特定の利害がある組織に偏ることが無いように留意する。
- 既存コード分類や新しい分類体系の試みを可能な限り取り入れる。
- 建設分野全体で利用可能なオープンで拡張可能な基準とする。
- 長期的かつ継続的に運用可能なものとする。

解説:
対象とする建設情報は多分野に渡りその量も膨大である。分類体系は実際に利用されてこそ意味があるものである。このため必要性の高い分野から順次開発することが現実的である。
また、特定の利害関係によって建設分野における情報単位（用語・概念）の標準化が阻害されることがあるとはならない。
現在流布している既存コード分類や、今回と同様の試みによって作成されている分類体系とも関連付けを行い、建設分野全体において利用可能であり、オープンで拡張可能な基準とする。
なお、長期的かつ継続的に運用可能なものとするためには、基本フレームの変更は極力避けるものとする。

4-3 開発体制及び維持管理体制

- 多くの関係者、専門家の参画を得て開発する。
- 長期的かつ継続的な運用が保証される体制を整備する。

解説:
開発には各分野の知識の集積が不可欠である。また、特定の利害がある組織に偏ることなく、責任と実績を持った機関・団体との協力を通じて開発及び維持管理を行うことが不可欠である。
5 JCCSの構成

5-1 JCCSクラス

JCCSのクラスは、ISO 12006-3に準拠し、図10にJCCSクラスを示す。

解説:
1) JCCSの上位クラス
JCCSはISO 12006-3に準拠し、「ルート（Root）」を最上位のスーパークラスとし、特殊化したクラスとして「関係（Relationship）」、「オブジェクト（Object）」及び「収集（Collection）」を持つこととした。

JCCSの「オブジェクト（Object）」のサブクラスは、我が国の建設情報の特性及び先行事例を考慮して下図のように定めた。

<table>
<thead>
<tr>
<th>ISO/DIS 12006-3</th>
<th>JCCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ABS)Root</td>
<td>(ABS)Root</td>
</tr>
<tr>
<td>(ABS)Collection</td>
<td>関係</td>
</tr>
<tr>
<td>Relationship</td>
<td>(ABS)Object</td>
</tr>
<tr>
<td>（ABS）Object</td>
<td>(ABS)Object</td>
</tr>
<tr>
<td>Subject</td>
<td>建設生産物</td>
</tr>
<tr>
<td>(ABS)Activity</td>
<td>（ABS）Project</td>
</tr>
<tr>
<td>Actor</td>
<td>資源</td>
</tr>
<tr>
<td>Unit</td>
<td>（ABS）Process</td>
</tr>
<tr>
<td>MeasureWithUnit</td>
<td>主体</td>
</tr>
<tr>
<td>Property</td>
<td>特性</td>
</tr>
</tbody>
</table>

(ABS)は、ABSTRACTの略であり、抽象クラスを指す。

図10 ISO 12006-3とJCCSの最上位クラス比較
２）「建設生産物」のサブクラス
現時点における「建設生産物」のサブクラスは以下のとおりである。
なお、検討する際に、既存のプロダクトモデルのスキーマである IFC2x 注4 の一部を参考にした。

○建設生産物のサブクラス（案）
・「空間構成要素」：空間を構成するもの。
・「構成要素」：その実体を構成するもの。

○空間構成要素のサブクラス（案）
・「基点構造物」：ある限定された範囲で独立的に建設され、位置情報として中心的なポイントを1つ持つ構造物。建設物本体、付帯構造物、工作物などが該当する。
・「断面構造物注5」：基本的な断面構造と計画線あるいは実態を持って基準線といった長さ方向の情報を持つ構造物。
・「領域構造物」：境界線の情報を持ち、面的に分布させて建設する構造物。
・「ネットワーク構造物」：ネットワーク構成要素であるノードとリンクの機能を持つ構造物。
・「空間」：建設生産物の一部であり、特定の用途のため物理的または概念的に区画されるもの。
・「サイト」：計画、設計、工事の期間で将来構造物となることが予定された仮想的な場所。

○構成要素のサブクラス（案）
・「構造要素」：構造物を構成する、荷重に抵抗し荷重に伝達する構造単位。
・「仕上要素」：建設生産物の内部外部における表面を構成する要素。
・「設備要素」：建設生産物の設備のこと。
・「家具・備品・機器要素」：什器備品等、建設生産物に付属するもの。
・「外構要素」：建築物の外構を構成する要素のこと。

注4 Industry Foundation Classes 2x．IAI (International Alliance for Interoperability) が定義した建物を構成する全てのオブジェクトのシステム的な表現方法の仕様のこと。アプリケーションで用いるプロジェクト・モデルのデータ構造も合わせて提示される。現在カーネルの一部が ISO/PAS-16739 として承認されている。

注5 わが国では一般的に線形構造物と呼ばれるが、断面の概念を明確にするためこの名称を用いた

22
3）JCCS クラスの全体像

JCCS クラスの全体像は、EXPRESS-G の表記法を用いた場合、以下のように表現される。

なお、下記の JCCS クラスの全体像は、左の根源（Root）から、右へ向かって特化の関係を持っている。

図 11 JCCS クラス
5-2 JCCS 基本コード体系 (JCCS 基本テーブル)

JCCS 基本コード体系に含まれる「JCCS 基本テーブル」は、ファセット分類を採用し、次の 6 つのファセットテーブルを基本とする。

Spaces：空間
Products：建設物
Management：管理・行為
Resources：資源
Actors：主体
Property：属性

解説：
JCCS 基本コード体系では、ISO12006-2 で推奨している 17 のファセット注6を基本に、国内外の既存の分類体系を比較検討し、我が国における建設分野への適合性、実用性及びメンテナンス性等を考慮した結果、図 12 に示すとおり、6 つのファセットに分け、テーブル化した。
なお、各テーブルの概要は、表 1 に示している。

表 1 JCCS 基本テーブルの各テーブルの定義

<table>
<thead>
<tr>
<th>テーブル</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>空間</td>
<td>物理的実体の内部、あるいは外部において実質的、概念的に区画される部分。</td>
</tr>
<tr>
<td>建設物</td>
<td>建設行為により生産される物理的実体及びそれを構成する要素。</td>
</tr>
<tr>
<td>管理・行為</td>
<td>建設生産物全体のライフサイクルにおいて行なわれる業務及び行為。</td>
</tr>
<tr>
<td>資源</td>
<td>建設結果を生み出すために建設行為で使用される諸要素。物理的実体を持つものと持たないものがある。</td>
</tr>
<tr>
<td>主体</td>
<td>建設生産物全体のライフサイクルにおいて行なわれる業務及び行為を遂行する人及び組織。</td>
</tr>
<tr>
<td>属性</td>
<td>すべての物理的実体、非物理的実体の持つ性質。</td>
</tr>
</tbody>
</table>

注6: 分析統合型分類、あるいは分析合成型分類ともいわれる。主題のもつ特性や属性をいくつかの観点から捉える多面的分類方法である。
図 12 JCCS 基本分類・コード（基本コード）
表 2 JCCS 基本テーブルの構成（その1）

<table>
<thead>
<tr>
<th>空間テーブル</th>
<th>建設物テーブル</th>
</tr>
</thead>
<tbody>
<tr>
<td>空間 (Spaces)</td>
<td>建設物 (Products)</td>
</tr>
<tr>
<td>(レベル1)</td>
<td>(レベル1)</td>
</tr>
<tr>
<td>形態別空間</td>
<td>空間構成要素</td>
</tr>
<tr>
<td>形態別空間</td>
<td>基本構造物</td>
</tr>
<tr>
<td>密閉空間</td>
<td>断面構造物</td>
</tr>
<tr>
<td>覆われていない密閉空間</td>
<td>覆われた開放空間</td>
</tr>
<tr>
<td>覆われている開放空間</td>
<td>開放空間</td>
</tr>
<tr>
<td>その他</td>
<td>その他</td>
</tr>
<tr>
<td>機能空間</td>
<td>基本構造物</td>
</tr>
<tr>
<td>人的機能空間</td>
<td>断面構造物</td>
</tr>
<tr>
<td>物的機能空間</td>
<td>覆われた開放空間</td>
</tr>
<tr>
<td>特定条件空間</td>
<td>開放空間</td>
</tr>
<tr>
<td>その他</td>
<td>その他</td>
</tr>
<tr>
<td>その他</td>
<td>管理行為一般</td>
</tr>
<tr>
<td>(レベル2)</td>
<td>(レベル2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資源テーブル</th>
</tr>
</thead>
<tbody>
<tr>
<td>管理・行為 (Management)</td>
</tr>
<tr>
<td>(レベル1)</td>
</tr>
<tr>
<td>管理行為一般</td>
</tr>
<tr>
<td>プロジェクト行為一般</td>
</tr>
<tr>
<td>その他</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資源 (Resources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(レベル1)</td>
</tr>
<tr>
<td>材料</td>
</tr>
<tr>
<td>施設</td>
</tr>
<tr>
<td>他の財産</td>
</tr>
<tr>
<td>プロジェクト情報</td>
</tr>
<tr>
<td>プロジェクト情報</td>
</tr>
<tr>
<td>プロジェクト情報</td>
</tr>
<tr>
<td>プロジェクト情報</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資源 (Resources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(レベル1)</td>
</tr>
<tr>
<td>物権一般</td>
</tr>
</tbody>
</table>
表 3 JCCS 基本テーブルの構成（その 2）

<table>
<thead>
<tr>
<th>主体テーブル</th>
<th>属性テーブル</th>
</tr>
</thead>
<tbody>
<tr>
<td>主体 (Actor)</td>
<td>属性 (Attributes)</td>
</tr>
<tr>
<td>公共機関</td>
<td>順位属性</td>
</tr>
<tr>
<td>企業</td>
<td>時間属性</td>
</tr>
<tr>
<td>公共機関組織</td>
<td>位置属性</td>
</tr>
<tr>
<td>企業組織</td>
<td>価値属性</td>
</tr>
<tr>
<td>建設関連主体</td>
<td>関連属性</td>
</tr>
<tr>
<td>利害関係主体</td>
<td>立体環境属性</td>
</tr>
<tr>
<td>資金投資主体</td>
<td>性能属性</td>
</tr>
<tr>
<td>他分野主体</td>
<td>用途属性</td>
</tr>
<tr>
<td>その他</td>
<td>機能属性</td>
</tr>
<tr>
<td>主体属性</td>
<td>単位属性</td>
</tr>
<tr>
<td>その他</td>
<td>表記属性</td>
</tr>
<tr>
<td>その他の属性</td>
<td>その他</td>
</tr>
<tr>
<td>建設生産物属性</td>
<td>構成要素属性</td>
</tr>
<tr>
<td>その他</td>
<td>その他</td>
</tr>
<tr>
<td>空間属性</td>
<td>空間的複合性</td>
</tr>
<tr>
<td>その他</td>
<td>形態空間属性</td>
</tr>
<tr>
<td>管理・行為属性</td>
<td>機能空間属性</td>
</tr>
<tr>
<td>その他</td>
<td>その他</td>
</tr>
<tr>
<td>資源属性</td>
<td>立地環境属性</td>
</tr>
<tr>
<td>その他</td>
<td>空間の複合性</td>
</tr>
<tr>
<td>主体属性</td>
<td>性能属性</td>
</tr>
<tr>
<td>その他</td>
<td>その他</td>
</tr>
<tr>
<td>その他の属性</td>
<td>その他</td>
</tr>
</tbody>
</table>

27
参考）各テーブルの検討の概要

○事例：空間テーブルの考え方

■ ISO 12006-2 における空間の定義
【空間（Space）の定義】
建築物又はその他の建設エンティティ内に含まれるか、又はその他の方法で関連付けられた、三次元の物質的な建設結果。

表 4 付属書 A によるオブジェクト・クラスに適用された特殊化の原則

<table>
<thead>
<tr>
<th>クラス</th>
<th>特殊化の原則</th>
<th>付属書 A(参考)</th>
</tr>
</thead>
<tbody>
<tr>
<td>空間</td>
<td>密閉の程度</td>
<td>A4</td>
</tr>
<tr>
<td></td>
<td>機能又は利用者活動</td>
<td>A5.6</td>
</tr>
</tbody>
</table>

■ JCCS クラス（スキーマ）と ISO 12006-2 の関連
JCCS クラス（スキーマ）と ISO 12006-2 の付属書 A との関連を考慮し、「空間」テーブルを空間の形やその広がりという視点で捉えた場合、形式における分類と密閉の程度（形態）における分類が考えられる。
機能又は活動の視点から捉えた場合は、特定な条件をもつ空間と施設における機能空間の分類が考えられ、また「現場」を例とした建設過程において一時的に存在する概念的な空間が分類される。

図 13 JCCS クラス図と空間分類の対比

■ 空間テーブルの分類の考え方
1）空間の形やその広がりの視点（空間外形）から捉えた場合
 ①形状による分類
 ②密閉度（形態）による分類
2）活動または機能の視点から捉えた場合
 人の活動を主体とした機能による分類
3）建設過程で一時的に存在する概念空間の分類
空間テーブルの構成要素の考え方

I 空間外形（形状・形態）

外形とは、物の外側の面に注目して見たときのかたちである。

①空間形状：形状に視点をおいた分類
形状とは、物に備わった性質の一部としてのかたち。
- 基点空間：ある限定された範囲で独立的に建設され、位置情報として中心的なポイントを一つもつ空間。
- 断面空間：基本的な断面構造と計画線あるいは実体をもった基準線といった長さ方向の情報をもつ空間。
- 領域空間：境界線の情報をもち、面的に分布させる空間。
- ネットワーク空間：ネットワーク構成要素であるノード（結節点）とリンク（連結）の機能をもつ空間。

②空間形態（ISO-12006-2の付属書を参考に分類）
形態とは、構造をもった物事の全体的なかたち。
- 密閉空間：全ての側面が完全に物理的に区切られている。
- 覆われていない密閉空間：覆われていない。部分的に又は全体的に物理的な水平の境界がある。
- 覆われている開放空間：覆われている。物理的な水平の境界は全くないか、又は一部のみ。
- 開放空間（open space）：覆われていない。物理的な水平の境界は全くないか、又は限られている。

II 機能空間：人の活動を主体とした機能空間の分類

①特定条件空間：人の活動を主体とした機能をもつ空間であり、特定の条件をもつ空間の分類。
②施設空間：人の活動を主体とした機能をもつ施設空間を分類。

III サイト：建設過程で一時的に存在する概念空間。
例）現場
5-3 JCCS 基本コード体系（JCCS 基本コード）

○JCCS 基本コードの付番法則
JCCS 基本コードの付番の法則は以下の方法とする。
テーブル名コード（2 桁）
＋レベル 1 コード（1 桁）
＋レベル 2 コード（1 桁）
＋レベル 3 コード（1 桁）
（以下同様）

（例）「空間テーブル（Sp）」「機能空間(2)」「人的機能空間(1)」「飲食空間(1)」
→ Sp211

○テーブル名コードの付番方法
基本テーブルの各テーブル名の英語の頭文字を 2 桁とることとする。具体的には以下とする。

Sp （Spaces：空間）
Pr （Products：建設物）
Ma （Management：管理・行為）
Re （Resources：資源）
Ac （Actors：主体）
Pr （Property：属性）

○レベルコードの付番方法
レベルコードは、0-9,A-Z の順に付番する。

5-4 JCCS 基本コード体系（JCCS 辞書）
JCCS 辞書は、JCCS 基本テーブルに用いられる用語の意味を定義したものである。
5-5 JCCS 複合化ルール

複合化ルールは、複合した概念に対して、複数の基本コードを用いて表すためのルールである。

1）複合化ルール
○基本表現
同列に扱うコードを複数列挙する場合は、「+」を使用する。
また、複数のコードで表現される機能が融合する場合の表現は「:」を使用する。

○表記上の補助表現
連続するコードを多数連続するような場合は、助長な表現となる場合がある。
これを簡易な表現とするために「/」を利用する。
また、ひとまとまりの概念を表現したい場合は、「[]」を使用する。

○集合関係の表現
包括関係を表現する場合は「@」を使用する。
なお、集合関係の表現を用いる場合は、主題を最初（左端）に配置する。

○追加選択表現（Option 表現）
特定の物や行為を属性やその関連を表現したい場合は「<< >>」でくくった中で表現する。
なお、関係の構造を表現したい場合は次の表現を用いる。
• かつ（AND）&
• または（OR）|

2）配列のルール（今後の検討を要する）
なお、AIJ コード（仮称）WD（案）では、階層の意味を持たせているので、大きい概念すなわち上位のレベルから順次下位のレベルへと表現している。用語の主語は、日本語の語順と一致し最後にくることになっている。
表 5 JCCS複合化ルール（案）

<table>
<thead>
<tr>
<th>No</th>
<th>複合記号</th>
<th>用 法</th>
<th>具体的な事例</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>「+」</td>
<td>コードを並列するときに連結。
表記例) A + B</td>
<td>1 K
 ⇒居室+台所</td>
</tr>
<tr>
<td>②</td>
<td>「:」</td>
<td>並列しない制約的連結を有するときに連結。
表記例) A : B</td>
<td>ワンルーム
 ⇒居間:台所</td>
</tr>
<tr>
<td>③</td>
<td>「/」</td>
<td>連続した番号をもつコードを並列する場合、最初と最後のみ表記。
表記例) A + B + C → A／C</td>
<td>河川と道路の間のフェンス
 [河川 + 道路] : フェンス</td>
</tr>
<tr>
<td>④</td>
<td>「[]」</td>
<td>ひとつの概念を総括するもの。ふたつ以上の概念を並列する場合の表記。
表記例) [A + B] : D</td>
<td>公園にある四阿
 ⇒四阿@公園</td>
</tr>
<tr>
<td>⑤</td>
<td>「@」</td>
<td>前置事象が後置事象の一部である場合に表記。
表記例) A@B</td>
<td>一級河川の河道(水路)
 ⇒河道(水路)《一級河川》</td>
</tr>
<tr>
<td>⑥</td>
<td>「<< >>」</td>
<td>コードの属性を示す場合、コードのすぐ後ろに表記。
表記例) A<< B >> ‾‾‾‾‾‾‾‾‾‾‾‾‾*B は A の属性</td>
<td>保全かつ活用
 ⇒保全&活用</td>
</tr>
<tr>
<td>⑦</td>
<td>&</td>
<td>かつ (AND)</td>
<td>保全かつ活用
 ⇒保全＆活用</td>
</tr>
<tr>
<td>⑧</td>
<td></td>
<td>または(OR)</td>
<td>搾拌または注入
 ⇒攪拌</td>
</tr>
</tbody>
</table>

なお、今後、JCCS を XML 等の言語で利用した場合、上記の複合記号が予約語として利用できない場合が考えられる。よって表方法については更に検討を行う必要がある。
5-6 ユーザが中心となって開発する分野

1）JCCS 応用コード体系（応用テーブル）

JCCS 応用コード（応用テーブル）は、ある目的に沿って体系化したテーブルである。
現在、コード小委員会では実際の用途の利便性を勘案して、「施設」、「ワークセクション」の2つの応用テーブルが検討されている。なお、コード小委員会で検討中の応用テーブルのISO 12006-2における位置を図14に示す。

なお、JCCS 応用コード（応用テーブル）は、今後の重要な検討課題であり、ニーズに応じて検討を行う必要がある。

2）JCCS 応用コード体系（応用コード）

JCCS 応用コード（応用コード）は、応用テーブルの分類対象を、複合化ルールに基づき、JCCS 応用コード（応用テーブル）を構造化したものである。

3）JCCS 推奨分類体系

建設分野において共通性が高いと判断され、コード小委員会で認定された「JCCS 応用コード」である。

4）JCCS 実用コード

「JCCS 応用コード」を実際の利用上の利便性を図るため、独自に単純化したコードである。

「JCCS 応用コード」への完全なコードの復元が可能である。

なお、コード小委員会で検討が行われている「施設」、「ワークセクション」の応用テーブルについても、JCCS 実用コードとしての付番を予定しており、方法はJCCS 基本コードの方法を踏襲する予定である。
表 6 JCCS 応用テーブルの構成

<table>
<thead>
<tr>
<th>施設テーブル</th>
<th>ワークセクションテーブル</th>
</tr>
</thead>
<tbody>
<tr>
<td>(レベル1)</td>
<td>(レベル2)</td>
</tr>
<tr>
<td>施設</td>
<td>施設</td>
</tr>
<tr>
<td></td>
<td>(Facilities)</td>
</tr>
<tr>
<td>国土利用施設</td>
<td></td>
</tr>
<tr>
<td></td>
<td>通水施設</td>
</tr>
<tr>
<td></td>
<td>下水道施設</td>
</tr>
<tr>
<td></td>
<td>土砂災害施設</td>
</tr>
<tr>
<td></td>
<td>雪崩対策施設</td>
</tr>
<tr>
<td></td>
<td>防火施設</td>
</tr>
<tr>
<td></td>
<td>防風施設</td>
</tr>
<tr>
<td></td>
<td>公害対策施設</td>
</tr>
<tr>
<td></td>
<td>環境保全施設</td>
</tr>
<tr>
<td></td>
<td>その他</td>
</tr>
<tr>
<td>国土保全施設</td>
<td></td>
</tr>
<tr>
<td></td>
<td>治水施設</td>
</tr>
<tr>
<td></td>
<td>土砂災害施設</td>
</tr>
<tr>
<td></td>
<td>雪崩対策施設</td>
</tr>
<tr>
<td></td>
<td>港湾防災施設</td>
</tr>
<tr>
<td></td>
<td>災害対策施設</td>
</tr>
<tr>
<td></td>
<td>その他</td>
</tr>
<tr>
<td>特殊施設</td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他</td>
</tr>
<tr>
<td>その他の施設</td>
<td></td>
</tr>
</tbody>
</table>

ワークセクション (Work Section)

<table>
<thead>
<tr>
<th>(レベル1)</th>
<th>(レベル2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設工事</td>
<td>共通工事</td>
</tr>
<tr>
<td></td>
<td>土木工事</td>
</tr>
<tr>
<td></td>
<td>建築工事</td>
</tr>
<tr>
<td></td>
<td>設備工事</td>
</tr>
<tr>
<td></td>
<td>維持管理工事</td>
</tr>
<tr>
<td></td>
<td>その他</td>
</tr>
</tbody>
</table>

図 14 コード小委員会で検討中の応用テーブルの ISO 12006-2 における位置

34
標準化の国際的な動向

分類体系の必要性は、国際的には認知されており、建設分野における分類体系のフレームワークの策定はISOにおいて行なわれている。

ISOでは、検討組織としてTC59技術委員会（建築一般）のSC13小委員会（設計、製造、施工過程における情報の編成/組織化）内に設置された作業部会WG2は、最初の成果として技術報告書ISO/TR14177注A（1994年）を出版し、現在その内容を発展させた国際標準案ISO12006を策定中である。

ISO12006のとりまとめは、分類体系を大きく二分し、従前の分類法によるものをISO12006-2注B（建設工事に関する情報の体系化―第2部：情報分類のフレームワーク）、オブジェクト指向の分類手法によるものをISO/DIS12006-3注C（建設工事に関する情報の体系化―第3部：オブジェクト指向での情報のフレームワーク）として検討が進められている。

なお、諸外国では建築分野を中心としてISO12006-2及びその前身であるISO/TR14177に準拠したコード分類体系であるUniclass（英国）、OCCS（北米）が作成され、ISO/DIS12006-3に準拠したコード体系であるIFC2xが検討されている。

注A ISO/TR14177は、SC13第5回会議（1993年6月、チューン）における、タイプ2の技術報告書「建設業における情報分類」であり、建築標準コード体系の枠組みをISO技術報告書として承認し、実質的な標準として機能させようとしたものである。この原案はCIB（国際建築研究情報会議）の作業部会W74（建築生産情報の調和）でそれまで練り上げてきた標準建築コード体系を基本的に踏襲し、欧州における具体的な分類表の策定プロジェクトとの整合を図るかたちで分類体系の骨格を規定しようとしたものである。

注B国際標準。ISO/TR14177を基礎におき、旧来の分類概念に依拠した標準分類の確立を狙いとし、その基本概念は「資源：Resource」が「行為：Process」によって「結果：Result」になるというもの。対象は建築土木全般で、設計から廃棄までのライフサイク全体を含む。そこで用いられる情報の分類の枠組（16の類とその上位の4類）と推奨されるべき17のテーブルを明らかにし、その構成要素を例示している。個々の分類表は各国や各組織のニーズに沿ったものが許容され、2001年11月1日にISO12006-2として公表された。

注C国際標準。オブジェクト指向とした結果、分類テーブルは、個々の情報システムの用途や機能に応じて、そのシステム特有のテーブル構成が可能となるように個別に作りこまれる形となり、各システムの機能向上に直接的に寄与しうるものとして位置づけられることとなった。現在、DIS12006-3が発行されている。モデルは3つとなるメインのコンセプトに分類され、「オブジェクト：Object」、「収集：Collection」、そして「オブジェクト」と「収集」の中間の関係：Relationship」の3つのメインコンセプトに分類されている。この概念は建築分野に特化したものではなく、生産物全般に適用されるものと考えられる。