IFC-based BIM for Civil Infrastructure and Some Cases

The 8th Asia Construction IT Round-table Meeting

Tokyo, Japan, August 3 – 4, 2012

Sang-Ho Lee

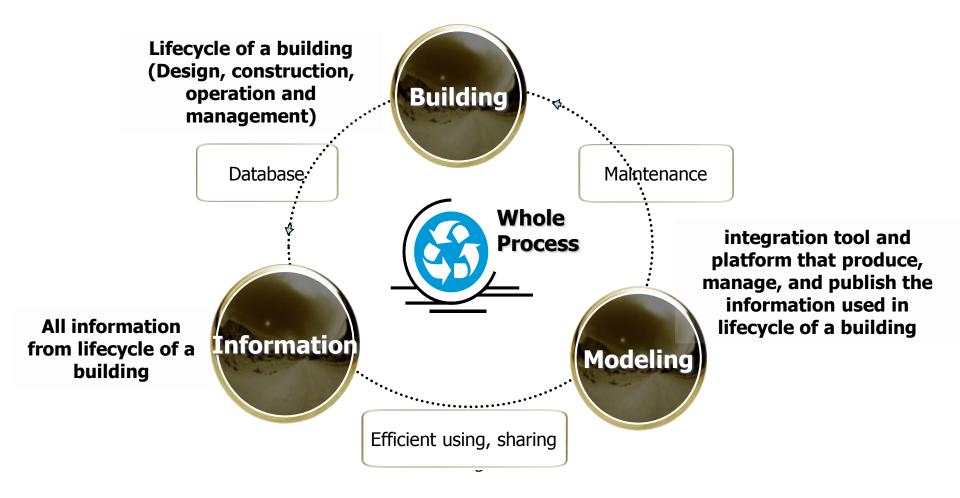
Professor School of Civil & Environmental Engineering Yonsei University Seoul, Korea E-mail: lee@yonsei.ac.kr

Contents

Introduction

IFC-based Information Modeling Method

- Adding New Entities
- Using User-Defined Property Sets


Application Examples in Civil Infrastructure Domain

Concluding Remarks

Building Information Modeling

BIM adoption of Ministry of Land, Transport and Maritime Affairs - 國土海洋部

National BIM Roadmap (2009)

- Base Technology Research for BIM (2011)
- Government Standard and Delivery Manual Research for BIM (2012)
- BIM/GIS Integration Research (2013)
- Master Plans for National Architectural Policy (2010)
 - Expanding investment for advanced BIM

A Common Guide for BIM – Modeling and Delivery (2011)

- Version 1 Architecture (Civil Infrastructure: will be added)
- Adoption Guide
- Modeling Guide
- Delivery Guide

Advanced e-Architectural Information System (2012)

• BIM: current issue and future goal

BIM adoption of Ministry of Land, Transport and Maritime Affairs - 國土海洋部

Architectural BIM Guidelines

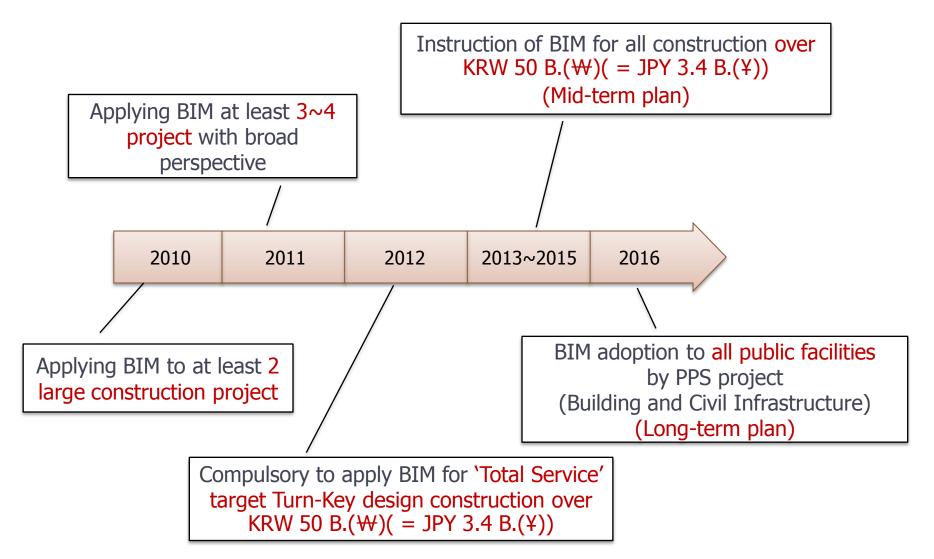
- National BIM Guidelines (2009)
 - BIM Task Guidelines
 - BIM Guidelines in Technical Support
 - BIM Management Guidelines
 - Application of Guidance
- National Architectural BIM Guide (2010)
 - BIM Working Guide
 - BIM Technical Guide
 - BIM Management Guide

BIM adoption of Public Procurement Service (PPS) - 調達廳

GOAL Public procurement innovation for design and construction management

> Short-tem plan (2010 ~ 2012) Improvement design quality by expanding BIM adoption

Mid-tem plan (2013 ~ 2015) Saving budgets by using 4D design management system


Long-tem plan (2016 ~)

Innovation work by expanding application of BIM into whole public facilities

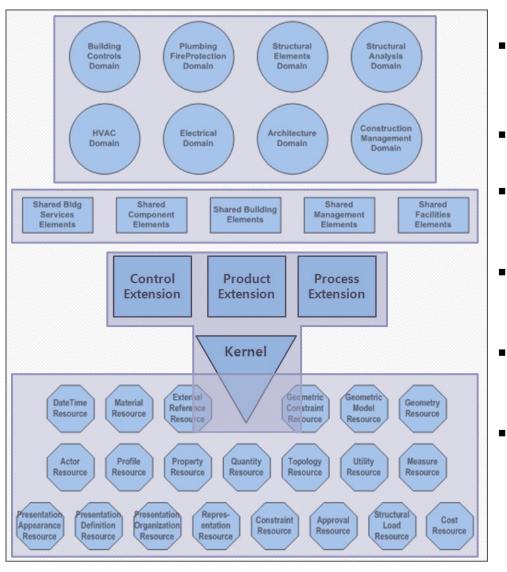
BIM adoption of Public Procurement Service (PPS) - 調達廳

Current BIM Technology in Civil Infrastructure

Advantages

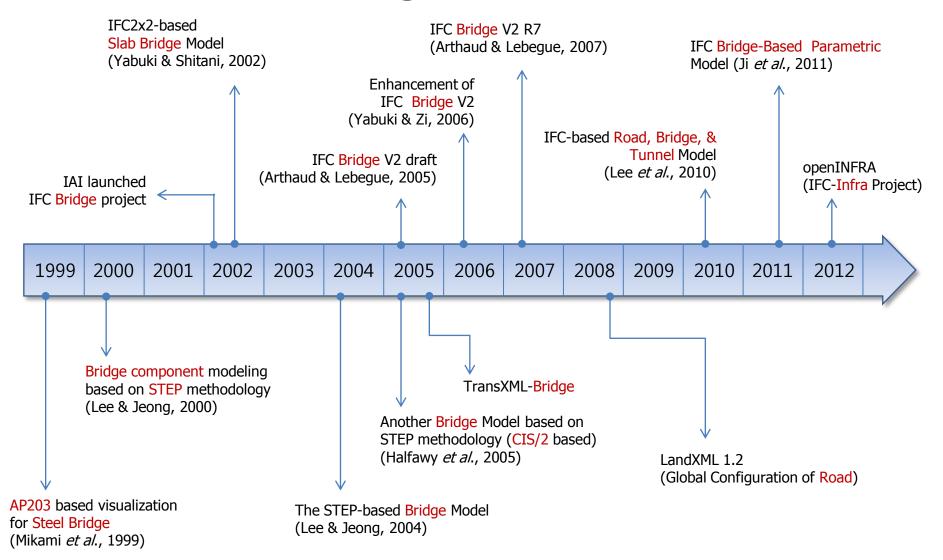
- **Reducing Design Change**: clash detection, aesthetic analysis, constructability analysis, etc.
- **Increasing Productivity**: automatic quantity tack-off, 4D & 5D based construction management, education for field laborers, etc.
- **Providing better presentation** (compared 2D drawings) in communication among different disciplines and stakeholders
- Major Obstacles in Civil Infrastructure Domain
 - Lack of Knowledge on BIM: Still New to civil engineers
 - **Insufficient S/W functions**: Lack of predefined structural component library and parametric rules among the components
 - Interoperability & Sustainability of Model Data:
 - Detailed Spatial and Physical Elements are Required

IFC-based Information Model


Industry Foundation Classes

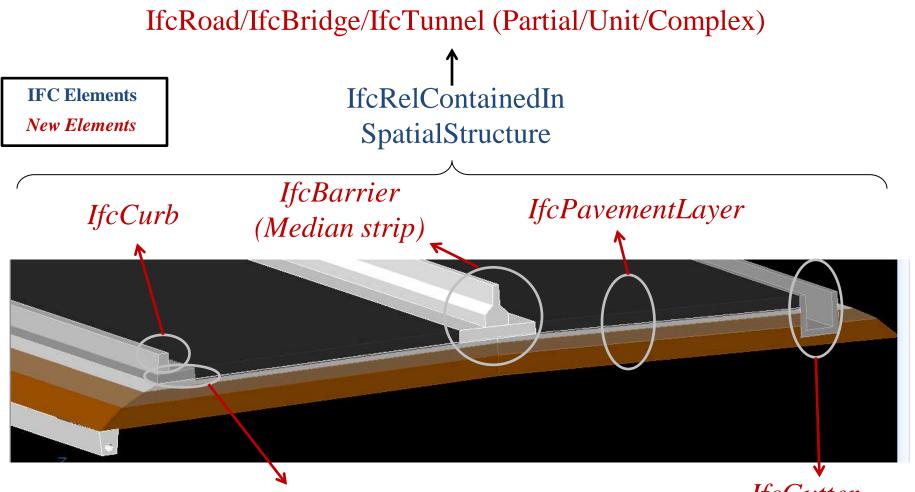
- A definition of a standard format to describe a BIM
- An object-based data model to facilitate interoperability in the architecture, engineering, and construction (AEC) industry
- How information should be provided/stored for all stages of a building projects lifecycle.
- Hold data for geometry, calculation, quantities, facility management, pricing etc.
- Registered by ISO as ISO/PAS 16739

IFC Architecture



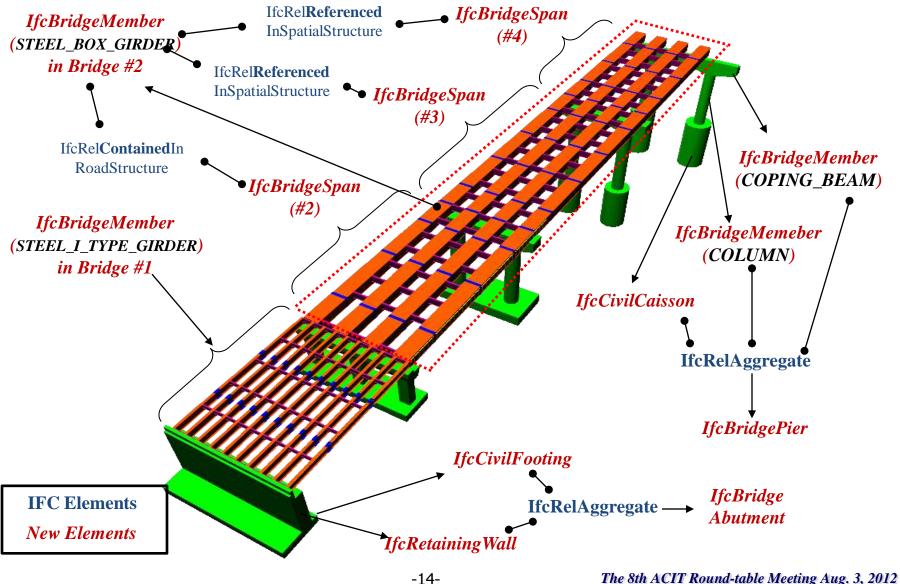
- Industry Foundation Classes (IFC): A definition of a standard format to describe a BIM
- Registered by ISO as ISO/PAS 16739
- Core Schemas
 The fundamental relationships and the common concepts.
- Shared Schemas
 More specialized objects and relationships shared by multiple domains.
 - Domain Schemas
 Organized definitions according to industry discipline.
- Sharing identical resource.

(1) IFC-based Bridge Model Adding New Entities

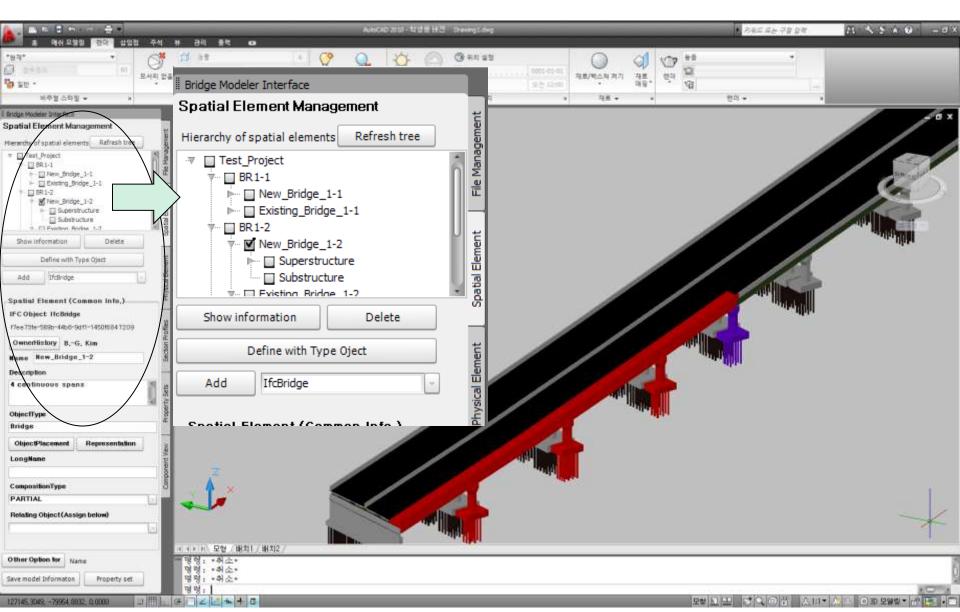

Adding New Entities for Civil Infrastructure

Category	Abstract type	Common components (Roads, Bridges, Tunnel, Retaining Walls)	Domain components
	IfcRoadSpatial Element (below IfcSpatialElement)	IfcRoadSite, IfcLane, IfcSlope, IfcCivilSpatialProxy	IfcBridge, IfcBridgeSpan
	IfcRoadService Element (below IfcElement)	IfcRoadBarrier, IfcTrafficSignal, IfcRoadSignalPost, IfcPost, IfcRoadRailing, IfcCrashCushion	IfcInspectionLadder, IfcRoadStair, IfcBridgeInspectionDeck
	IfcRoadElement (below IfcElement)	IfcPavementLayer, IfcCurb, IfcGutter, IfcSegment, IfcRetainingWall, IfcCivilFooting, IfcCivilPile, IfcCivilCaisson	IfcBridgeMember, IfcBridgeCable, IfcExpansionJoint, IfcPylon, IfcBearingSupport, IfcBridgeSlab, IfcBridgeAbutment, IfcBridgePier
	-	IfcGroundReinforcingElement, IfcMemberConnector (below IfcElementComponents)	IfcBridgeElementPart
	-	IfcRoadSystem (below IfcGroup)	IfcRoadSignalSystem, IfcInspectionSystem, IfcBridgeSytem,

New Common Elements for Road Structures



IfcGutter (*U-type*)

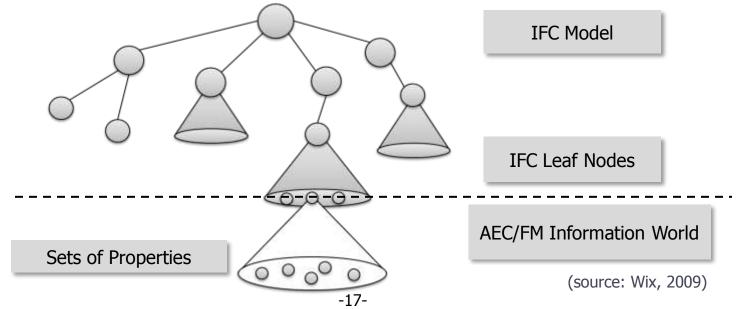

Example of New Physical Element Resource

Validation Example

Validation Example

(2) Civil Infrastructure Model Using User-Defined Property Sets

Property sets

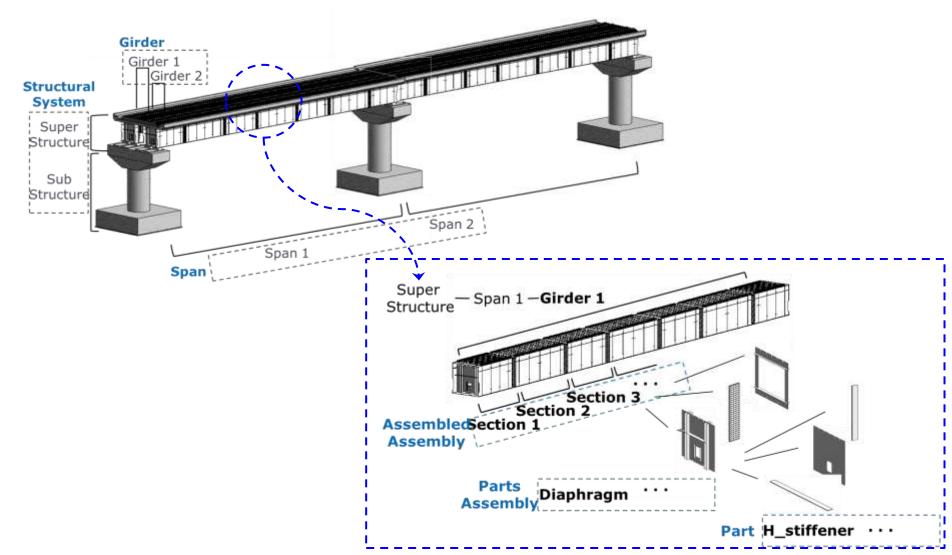

- A special capability in the IFC model
- Allow for extension of the IFCs without changing the model
- Provide a framework for user-defined information

Advantage

• Easy to use, IFC framework

Disadvantage

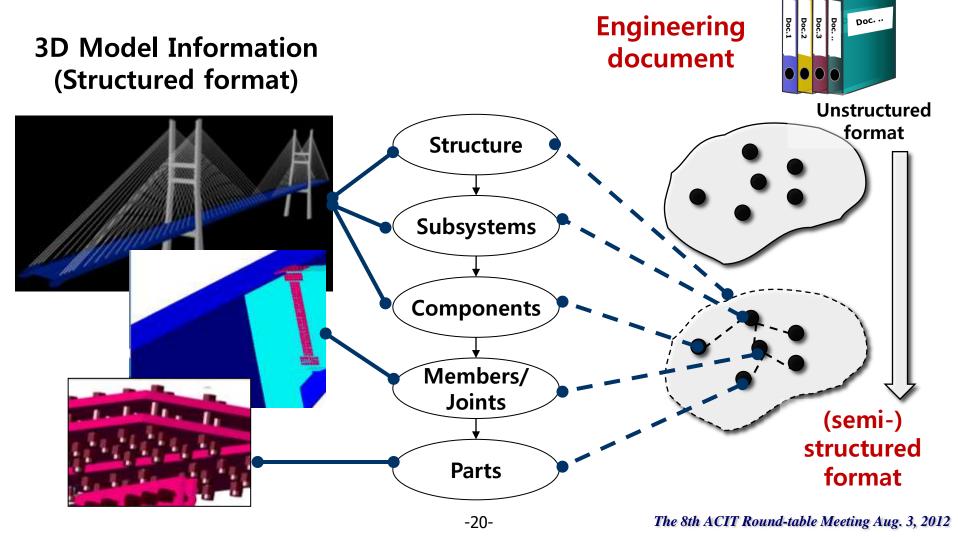
• There are some problems to identify definite semantic information of each element of the civil infrastructure.



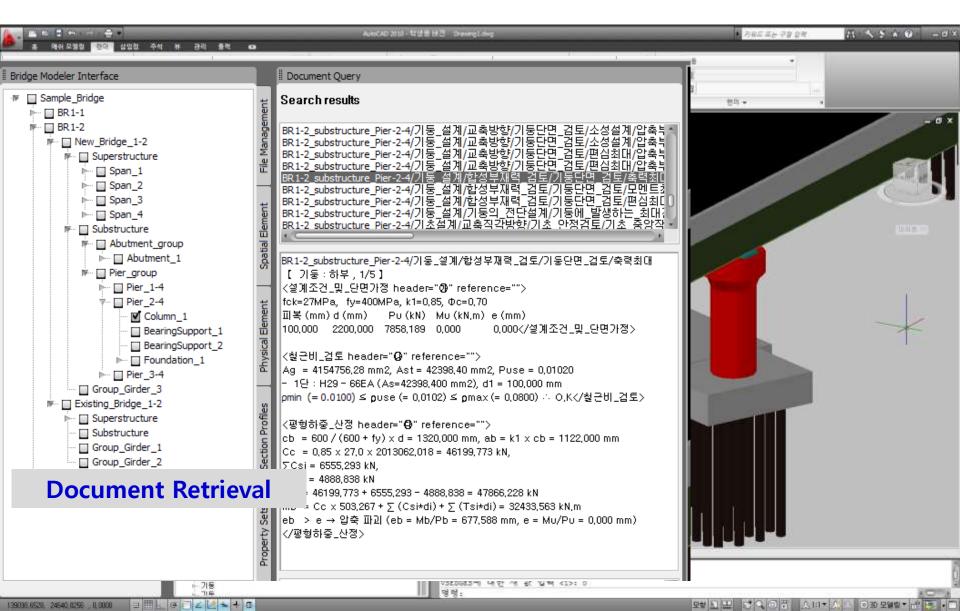
Bridge Member Identification Concept with User-Defined Property Sets

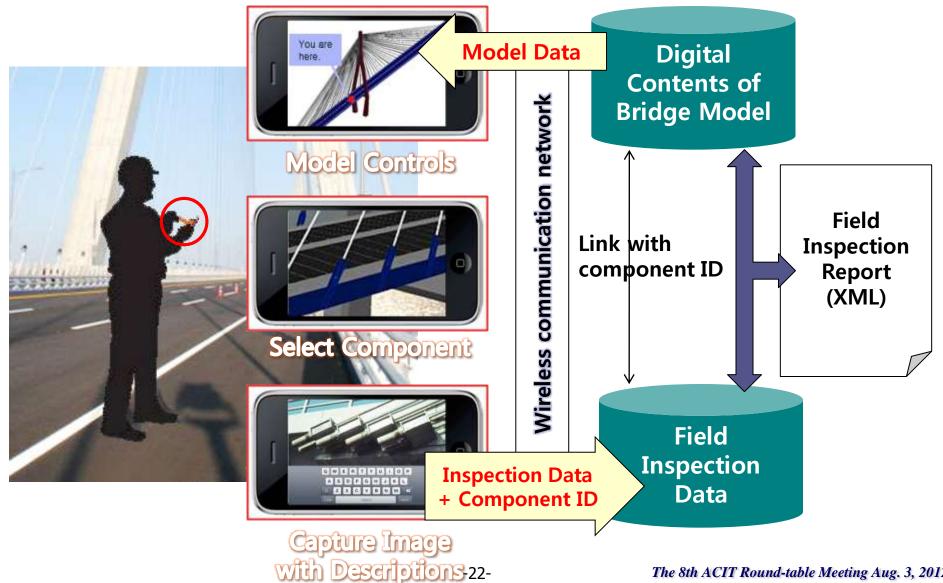
Property set name: Pset_BridgeMemberIdentification

Application Examples in Civil Infrastructure Domain

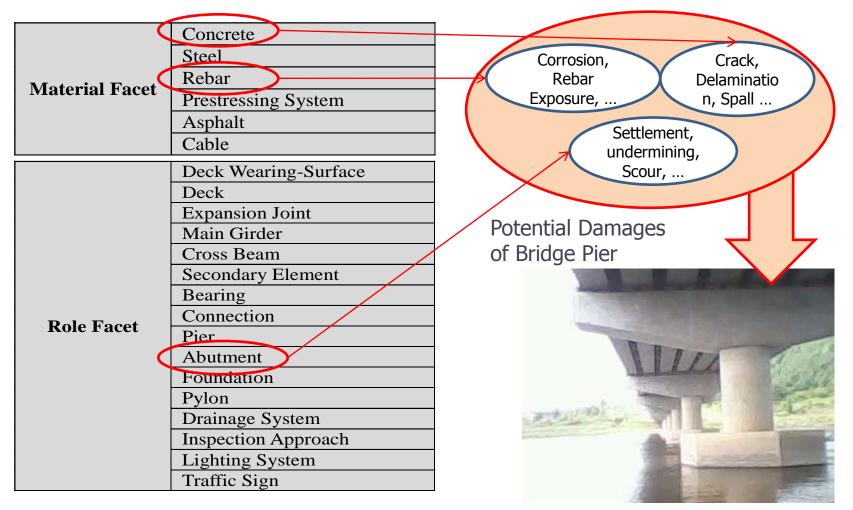

- Document Retrieval with Extended IFC Model
- Field Inspection with Extended IFC Model and user-defined property sets
- Bridge Model by LOD with Property Sets
- Construction Cost Estimation with Property Sets
- Calculating CO2 Emission with Property Sets
- 4D Simulation with Software for BIM

(1) Document Retrieval with Extended IFC Model

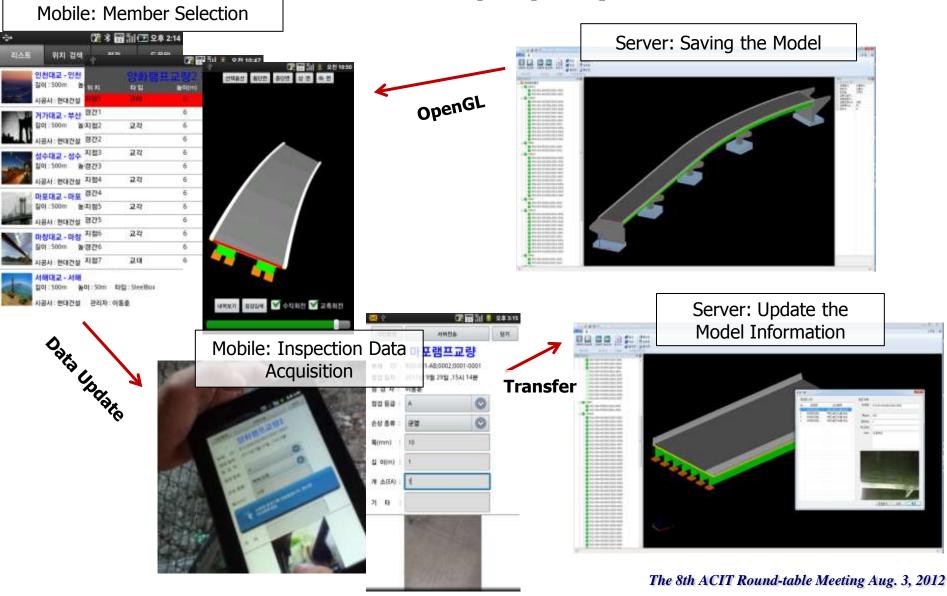



(1) Document Retrieval with Extended IFC Model

(2) Field Inspection with Extended IFC Model and user-defined property sets



(2) Field Inspection with Extended IFC Model and user-defined property sets


Classification of bridge damages

(2) Field Inspection with Extended IFC Model and user-defined property sets

(3) Bridge Model by LOD with Property Sets

Level of Detail (LOD)

- Efficient rendering for model
- Geometry definition by construction phase
- In BIM Project: use for project progress

		LOD 100	LOD 200	LOD 300	LOD 400	LOD 500
LOD level		Conceptual Geometry	Approximate Geometry	Precise Geometry	Fabrication	As-built
	Use	Planning	Conceptual Design	Detail Design	Construction & Produce	M & M
M	Building					
d e I	bridge	TH		HAR AND A		

Low-level Model

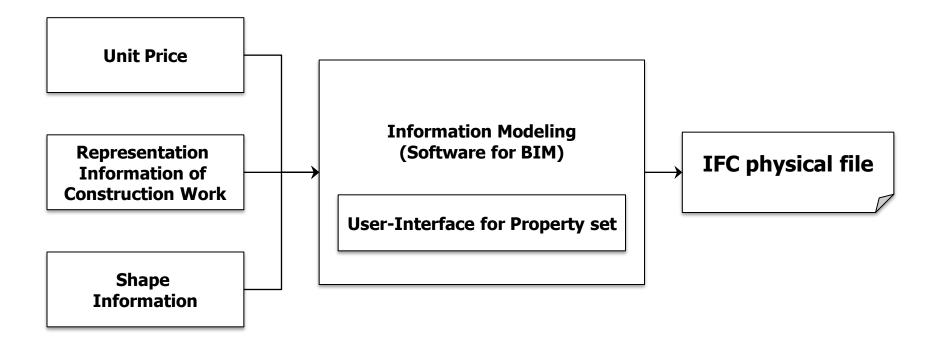
(3) Bridge Model by LOD with Property Sets

LOD Properti

Add / Modify Property set name:	Pset_LevelOfDetail
LOD Number: Use Typiclal No, 200	Select LOD (Level Of Detail):
LOD Progression:	Advanced Select LOD <
Project Stage: Design development Model Element: Slab Description: Not contain the rebars	& < LOD <
Add Properties Modify	View Model Save Model Exit

Exit

CAD-based User-Interface


The 8th ACIT Round-table Meeting Aug. 3, 2012

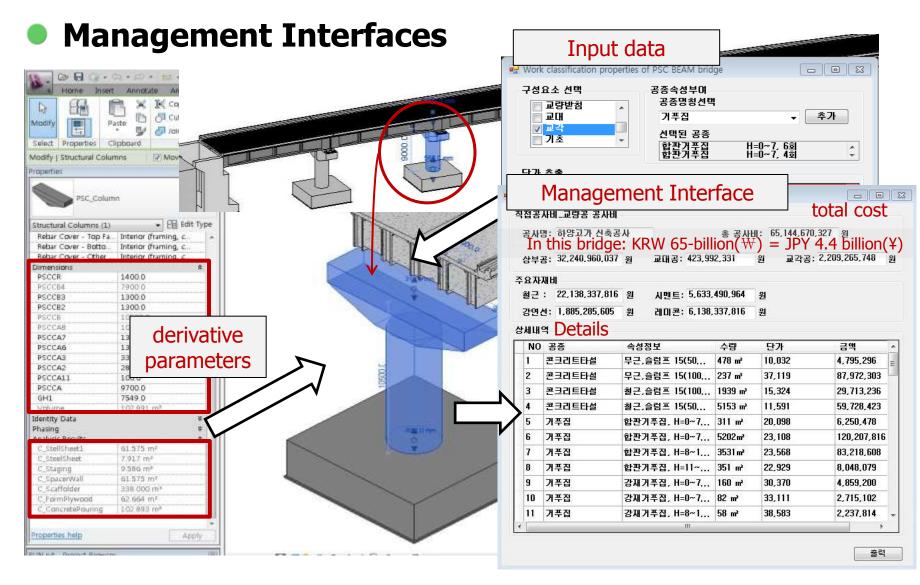
(4) Construction Cost Estimation with Property Sets

Basic Framework

(4) Construction Cost Estimation with Property Sets

Input Interfaces

Selection


Unit Price

Input Interface 🖳 속성정보 선택 **Construction Work Data Input Interface** 공종 선택 🖳 Work classification properties of PSC BEAM bridge 23 공종명칭 거푸집 Work 구성요소 선택 공종속성부며 공종명칭선택 교량받침 종류 합판거푸집 Type -추가 교대 거푸집 🕡 교각 H=0~7 높이 Height-선택된 공종 **Components** 기초 H=0~7, 6회 H=0~7, 4회 합판거푸집 합판거푸집 6호 사용회수 Usage count 단가 추출 직경 Diameter NO 공종 속성정보 단가 콘크리트타설 콘크리트타설/펌프카,... 13152 추가 1 거푸집 합판거푸집, 0~7m, 4회 17729 2 21424 3 동바리 강관동바리, 교량용, ... 22511 4 콘크리트타설 콘크리트타설, 무근, ... 5 스페이셔 스페이셔, 벽체용 278 2220 ~ 단가추출 수정 Pier 확인 취소 **Extraction Module**

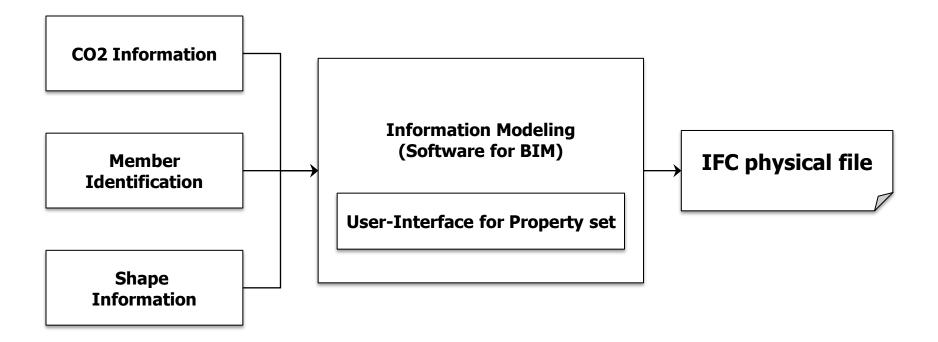
Construction Work Data

(4) Construction Cost Estimation with Property Sets

-29-

Backgrounds

<u>1990's</u>	 The Climatic Change Convention (1994) Publication of 1st IPCC Guideline by UNFCCC (1996) Kyoto Protocol (1997)
<u>2000's</u>	 Publication of 2nd IPCC Guideline by UNFCCC (2006) Publication of Low-carbon Green Growth Fundamental Law by Ministry of Environment (2009) Republic of Korea -> One of Annex from 2013 Publication of Several Guidelines about Green-house gases emission by domestic institutions
<u>2010's</u>	 Publication of Guideline to calculate the quantity of Carbon emission by MLTM (2011) Participation in Policy of government to decease 30% of Business As Usual (BAU) in 2020 Insufficiency of studies in Green-house gases from bridges
of CO2	e: Management of information about CO2 and Calculation emission quantity in design phase using bridge information based on IFC


2020 Reducing Goal of Total Emission of CO2 in Korea (million ton) 30 **Greenhouse Gases Emission** 900 (Reduction % than in 2005) 824.8 800 736.8 Business As 692 5 Usual 700 22 590,6 591 20 600 527.5 4% reduction 451.8 500 than in 2005 $(591.1 \rightarrow 567.5)$ 400 297.5 13 300 567.5 200 100 0 1990# 1995# 2000# 2004# 2005# 2010# X \bigcirc source: Green Growth Korea

CO2 1-ton = EUR 3(€), EUR 1(€) = KRW 1398(\mathbb{W}), EUR 1 = JPY 96(¥) 567.5 - 591.1 = 23.6-million ton = EUR 70.8 million(€) = KRW 98.9 billion(\mathbb{W}) = JPY 6.7 billion(¥)

Basic Framework

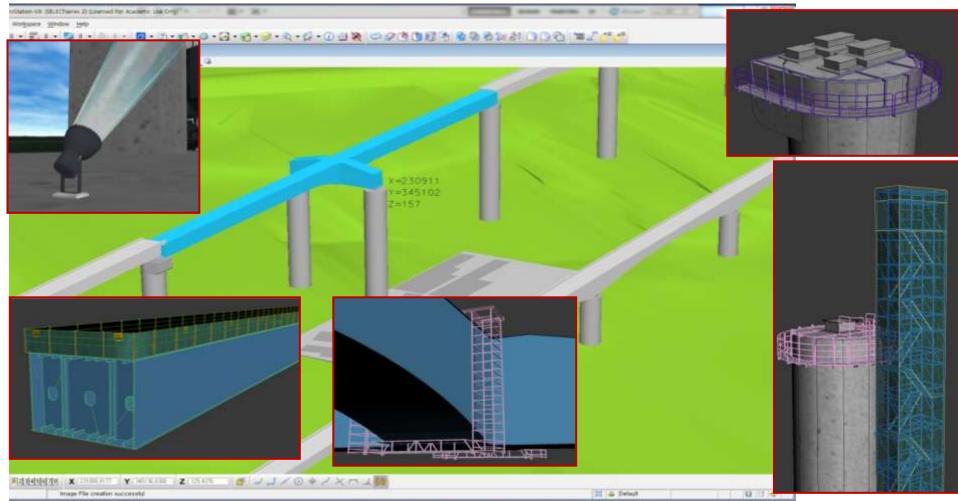
Basic Concept of Calculating the CO2 Emission

\rightarrow	Material Quantity	3.8879		
\int	CO2 Emission Factor	0.0024		
	CO2 Emission Quantity(TCO2)	0.009307	Span3 Girder CO2 Emission Quantity(TCO2)	126.009307
+			Span3 Slab CO2 Emission Quantity(TCO2)	254.0452

Bridge Information Model and User-Interface for Calculation of CO2 Emission

공사명 기 간	·	고가 신축공,	Ψ.		형 식: 총연장:	Steel Box Girder 1,441m	Bridge				Witdows
부재선 구조형 전 경간선 전	식선택 체	▼ 7	요소선택 Le 더 • 전 2선택 체 •	vel 3 체	Level 4 • 전 체	<u>र</u> ्थ	선택 (1827, CO2	출량 산출 ^물 량 95799999996 발생량 06056280005	m³ ton	Total V Total Emis	CO2
산출내	역			D	etails						
								Tn thic	Drida		
	No,	구조형식	구성요소		물량(m³)	CO2 배출계수	CO2 배출량	In this	aa	e:	
	276	UPPER	Steel_Girder_Vertical		0,007	0,0024	0,0001318		Bridge 70 ton	e:	
			1						aa	e:	
	276	UPPER	Steel_Girder_Vertical	erse_Rib_2	0,007	0,0024	0,0001318		70 ton	e:	
	276 277	UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transv	erse_Rib_2 I_Stiff_3	0,007 0,012	0,0024 0,0024	0,0001311 0,00022608		70 ton	e:	
	276 277 278	UPPER UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transvo Steel_Girder_Vertical	erse_Rib_2 I_Stiff_3 erse_Rib	0,007 0,012 0,007	0,0024 0,0024 0,0024	0,0001311 0,00022608 0,00013188		70 ton GIRDER	e:	
	276 277 278 279	UPPER UPPER UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transve Steel_Girder_Vertical Steel_Girder_Transve	erse_Rib_2 I_Stiff_3 erse_Rib erse_Rib_3	0,007 0,012 0,007 0,007 0,016	0,0024 0,0024 0,0024 0,0024 0,0024	0,0001311 0,00022608 0,00013188 0,00030144		GIRDER GIRDER	2:	
	276 277 278 279 280	UPPER UPPER UPPER UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transvo Steel_Girder_Vertical Steel_Girder_Transvo Steel_Girder_Transvo	erse_Rib_2 I_Stiff_3 erse_Rib erse_Rib_3 erse_Rib_3	0,007 0,012 0,007 0,016 0,01	0,0024 0,0024 0,0024 0,0024 0,0024 0,0024	0,0001311 0,00022608 0,00013188 0,00030144 0,0001884		GIRDER GIRDER GIRDER GIRDER	e:	
	276 277 278 279 280 281	UPPER UPPER UPPER UPPER UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transverse Steel_Girder_Vertical Steel_Girder_Transverse Steel_Girder_Transverse Steel_Girder_Transverse	erse_Rib_2 I_Stiff_3 erse_Rib erse_Rib_3 erse_Rib_3 erse_Rib_3	0,007 0,012 0,007 0,016 0,01 0,01	0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024	0,0001311 0,00022608 0,00013188 0,00030144 0,0001884 0,0001884		70 ton GIRDER GIRDER GIRDER GIRDER GIRDER	e:	
	276 277 278 279 280 281 282	UPPER UPPER UPPER UPPER UPPER UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transvo Steel_Girder_Vertical Steel_Girder_Transvo Steel_Girder_Transvo Steel_Girder_Transvo	erse_Rib_2 I_Stiff_3 erse_Rib erse_Rib_3 erse_Rib_3 erse_Rib_3 I_Stiff_2	0,007 0,012 0,007 0,016 0,01 0,01 0,01 0,07	0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024	0,000131 0,00022608 0,00013188 0,00030144 0,0001884 0,0001884 0,0013188		GIRDER GIRDER GIRDER GIRDER GIRDER GIRDER		
	276 277 278 279 280 281 282 283	UPPER UPPER UPPER UPPER UPPER UPPER UPPER UPPER	Steel_Girder_Vertical Steel_Girder_Transverse Steel_Girder_Vertical Steel_Girder_Transverse Steel_Girder_Transverse Steel_Girder_Transverse Steel_Girder_Transverse Steel_Girder_Vertical	erse_Rib_2 I_Stiff_3 erse_Rib erse_Rib_3 erse_Rib_3 erse_Rib_3 I_Stiff_2 I_Stiff_2	0,007 0,012 0,007 0,016 0,01 0,01 0,01 0,07 0,008	0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024	0,0001311 0,00022608 0,00013188 0,00030144 0,0001884 0,0001884 0,0001884 0,00013188 0,00015072		70 ton GIRDER GIRDER GIRDER GIRDER GIRDER GIRDER		

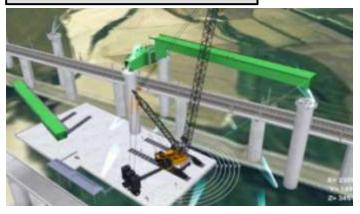
Assembled Member	Member	Material	Specification	CO ₂ Emission
	Concrete	Concrete	30MPa	201.25
			SD40H25	0.006
Deck	Rebar	H.T.Deformed Steel Bar	SD40H22	0.044
	Ballast	Gravel	-	1.45
	Flange	Steel Plate	SM520B	0.05
Girder	Web	Steel Plate	SM520B	0.025
Girder	Rib	Steel Plate	SM520B	0.025
	Concrete	Concrete	24MPa	152.7
Abutment		Deformed	SD40D29	0.046
Abuthent	Rebar	Steel Bar	SD40D25	0.025
	Concrete	Concrete	24MPa	239.52
	Concrete	Concrete	18MPa	97.48
Column			SD40D29	0.005
	Rebar	Deformed Steel Bar	SD40D25	0.012
	Concrete	Concrete	24MPa	0.80
POT Bearing	Shoe	Steel	4000KN	0.001
	Soul Plate	Steel	4000KN	0.001
Total				743.70

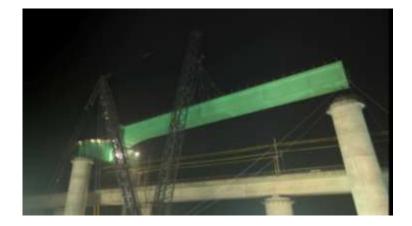


Overpass bridge for KTX crossing over KTX rail way (The World's first overpass bridge for high-speed line)

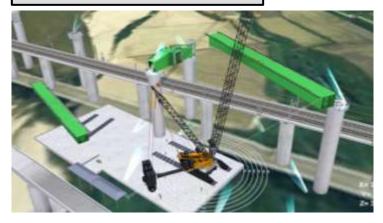
Geometric Modeling of Bridge

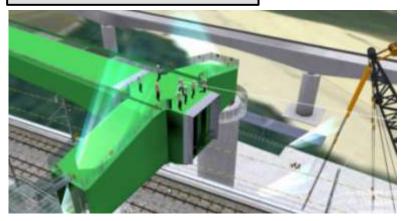
Construction Equipment Modeling and Labor Avatar


Points of BIM


Crane movement

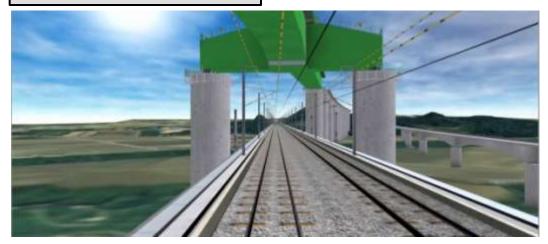
Loading simulation




Points of BIM

Conflict check

Joining simulation



Points of BIM

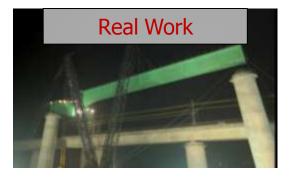
Labor movement

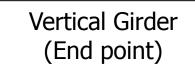
Education for drivers

Main works

Transverse Girder

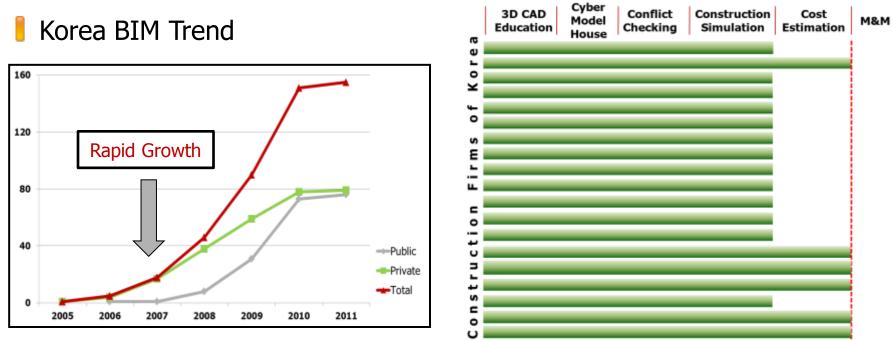
- 26 meter, 400 ton
- 00:50 ~ 03:20 (150 min.)
- April 6th, 2012





Vertical Girder (Start point)

- 80 meter, 600 ton
- 00:50 ~ 04:20 (210 min.)
- April 10th, 2012


- 80 meter, 600 ton
- 00:50 ~ 04:20 (210 min.)
- April 12th, 2012

Concluding Remarks

- Korea Construction Firm
 - 50% Construction firms use 3D CAD in the top 20 ranks for checking the conflict
 - 35% of firms have used BIM for construction simulation
 - Cost estimation using BIM is being planned
- International Collaboration for Standardization of Model Data used in Civil Infrastructure Domain